Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 19(2): e202300917, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38050823

RESUMO

A stable anode-free lithium metal battery (AFLMB) is accomplished by the adoption of a facile fabricated amorphous antimony (Sb)-coated separator (SbSC). The large specific surface area of the separator elevates lithium (Li)-Sb alloy kinetic, improving Li wetting ability on pristine copper current collector (Cu). When tested with LiNi0.8 Mn0.1 Co0.1 O2 (NMC811) as cathode, the full cell with SbSC demonstrates low nucleation overpotential with compact, dendrite-free and homogeneous Li plating, and exhibits a notable lithium inventory retention rate (LIRR) of 99.8 % with capacity retention of 93.6 % after 60 cycles at 0.5 C-rate. Conversely, full cells containing pristine separator/Cu (i. e., SC) and pristine separator/Sb-coated current collector (i. e., SSbC) display poor cycling performances with low LIRRs. Density functional theory corroborates the nucleation behaviours observed during in-situ half-cell Li deposition. Functionalizing polymeric separator by metallic coating in AFLMB is a novel approach in improving the cycle life of an AFLMB by promoting homogeneous Li plating behavior. This innovative approach exemplifies a promising applicability for uniform Li-plating behavior to achieve a longer cycle life in AFLMB.

2.
Chem Asian J ; 18(18): e202300538, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544905

RESUMO

A partially neutralized polyacrylic acid (Pn-PAA) is used for coating sub-micron-sized α-alumina on a conventional microporous polyolefin separator, fabricating a ceramic-coated separator (CCS). Pn-PAA acts as a dispersant and binder by adsorbing itself on alpha(α)-alumina surfaces under acidic condition through the columbic interaction, providing a repulsive force to disperse fine alumina in aqueous suspension, and binds alumina strongly on plasma-treated separator through hydrogen bonding. This CCS shows favorable wettability in carbonate-based liquid electrolyte and ionic conduction due to the high hydrophilicity of Pn-PAA and alumina. With that, this study found that Pn-PAA-made-CCS yields a substantial adhesion strength of ~106 N/m with enhanced cycle stability, a specific capacity of 145.0 mAh/g after 200 cycles at 1 C at room temperature in half cells (LFP/Li metal).

3.
Small ; 18(43): e2107773, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35934834

RESUMO

The high cost and scarcity of lithium resources have prompted researchers to seek alternatives to lithium-ion batteries. Among emerging "Beyond Lithium" batteries, rechargeable aluminum-ion batteries (AIBs) are yet another attractive electrochemical storage device due to their high specific capacity and the abundance of aluminum. Although the current electrochemical performance of nonaqueous AIBs is better than aqueous AIBs (AAIBs), AAIBs have recently gained attention due to their low cost and enhanced safety. Extensive efforts are devoted to developing AAIBs in the last few years. Yet, it is still challenging to achieve stable electrodes with good electrochemical performance and electrolytes without side reactions. This review summarizes the recent progress in the exploration of anode and cathode materials and the selection of electrolytes of AAIBs. Lastly, the main challenges and future research outlook of high-performance AAIBs are also presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...